11. Quantum Fields

The creation and destruction operators introduced in the previous chapter al-
most always occur in the context of quantum fields, even though these fields may
have quite variable interpretations. For example, the electromagnetic field can
be quantized by use of the canonical quantization picture, and this leads natu-
rally to the interpretation of the quantized amplitude of a field mode in terms of a
destruction or creation operator. On the other hand, the description of conserved
particles (such as atoms) as Bosons or Fermions leads to the construction of a cor-
responding quantized matter wave field operator, which obeys the Schrédinger
equation. The result is that matter-wave duality becomes universally enmeshed
with the concept of field quantization.

11.1 Kinds of Quantum Field

Any field, either classical and quantum, can be expressed as a linear combination
of linearly independent mode functions. These mode functions can in principle
be quite arbitrary, but the most useful modes are the plane wave modes. In terms
of these plane wave modes, the universal concepts shared by all quantized fields
are:

i) The association of each mode, labelled by an index i, with a wavevector k;.
ii) The mode function for each k;.

iii) The expression of the field operator in terms of the creation and destruction
operators, and the mode functions.

iv) The choice of Hamiltonian.

In the following we shall formulate the quantization procedure for some of the
most common quantum fields. For all of these, we will use box normalization, in
which the fields are supposed to be confined within a box of volume V, which is
considered to be very large.

11.1.1 Matter Wave Fields

We will consider a spinless particle of mass m, whose modes can be completely
characterized by the momentum vector 7ik. Thus for the matter wave field, the
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mode functions are

1 .
up(x) = —elkx, (11.1.1)

vV

a) Bosons: These are described in terms of a field operator in the Schriodinger
picture, which we will write in the form

Y = ) aguk(x). (11.1.2)
k

b) Commutation Relations for Boson Fields: As a result of the creation and de-
struction operator commutation relations (as in (10.1.1) ), we can derive the field
operator commutation relations

wx), v (x)) = §(x-x"), (11.1.3)
),y = yi@,y @) =0 (11.1.4)

These can be interpreted as meaning that the field operator v (x) creates a Bose
particle at the point x.

¢) Hamiltonian: We will use the notation for the mode frequency

h2k?
oy = , (11.1.5)

2m

and the Hamiltonian becomes

Hmatter = Y hwkal a, (11.1.6)

k

h2v?

= | d®xy’ (— ) ) 11.1.7
f xy'(x) o w(x) ( )

d) Field Operators in the Heisenberg Picture: In the Heisenberg picture the field
operator takes the form

wx, 1) = Y agup(x)e Ok, (11.1.8)
k

In this equation, the ay are the Schrodinger picture operators. The time depen-
dence is entirely represented in the arguments of the exponentials.

e) Equation of Motion: Using the commutation relations (11.1.3, 11.1.4), one can
derive the equation of motion for the quantum field, which is identical in form to
the free particle Schrédinger equation:
oy(x,t)  RViy(x,1)

at 2m
f) Fermions: The expression of Fermi fields in terms of mode functions is exactly
the same as for Bose fields, apart from the operator substitution ay — by where
by are Fermi operators. These satisfy, as in (10.1.8), anticommutation relations,
which lead to the field anticommutation relations

[y, 9" (x4 = 5(x-x), (11.1.10)

@),y = ' @),y =0. (11.1.11)

in

(11.1.9)
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The field operator ' (x) can be taken as the creation operator of a Fermi particle
at x. Even though the commutation relations have been replaced by anticommu-
tation relations, the Hamiltonian and equations of motion take exactly the same
form as for the Boson field, namely (11.1.7) and (11.1.9).

11.1.2 Sound Waves

Sound waves occur in a range of media—solid, liquid or gaseous—so here we will
simply give a generic and simplified description of their formulation and quan-
tization. We introduce a variable f(x,t) which represents the deviation of the
medium from its equilibrium state. For example, for sound waves in an elastic
solid, this is a measure of the strain, while for a gas it might be the deviation of
the pressure or the density from equilibrium. We take the resulting potential and
kinetic energy in the forms

1 [ 3 2
Zde x(Vf), (11.1.12)

2
%faﬂx(%) . (11.1.13)

Here we have introduced «, which is a measure of elasticity, and A, which is a
measure of inertia.

The wave equation resulting from these can be deduced using Lagrange’s equa-
tions, and is

Epot

Exin

>f 2

57 = V2 f, (11.1.14)
with the speed of sound c¢; being given by

1
Cg = ——. (11.1.15)
° VkA
a) Mode Functions: We now introduce mode functions and frequencies
1 .
ue(x) = —= ek, (11.1.16)
vV

wr = |klcs, (11.1.17)
and write the operator expansion

fen = fPn+ O, (11.1.18)

where f™)(x, 1) is called the positive frequency part of the sound field, and the
corresponding negative frequency part is f) (x, t). These are defined by

n

o=y Ao g u(x)e k!, (11.1.19)
k

fPwn=Y 2/1}:% alu’ (x)pe'x’. (11.1.20)
k
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By construction, the frequency-wavenumber relation (11.1.17) assures that f(x, )
and f@ (x, 1) are all solutions of the wave equation (11.1.14). The wave equation is
to be interpreted as a Heisenberg equation of motion for the field operator f(x, 1).

b) Commutation Relations: We interpret a;fc and ay, as creation and destruction
operators, and introduce the commutation relations

|ac.al,| =0 (11.1.21)

From these we can deduce the field commutation relations

af(x ) fwhn) = a’zé(x_x/). (11.1.22)

These commutation relations can also be obtained using an appropriate La-
grangian to derive the canonical co-ordinates and momenta, which are then
quantized by imposing canonical commutation relations.

c¢) Hamiltonian: The Hamiltonian is obtained from the kinetic and potential en-
ergies (11.1.12, 11.1.13), and takes the form

Sl

¥ hox (apai+ %). (11.1.24)
k

Hsound

d) Equation of Motion: Using the Hamiltonian and the commutation relations,
the Heisenberg equations of motion can be derived for both f(x, ) and its time
derivative 0 f (x, £)/0¢, which behaves as the canonical momentum conjugate to
f(x,1), because of the commutation relation (11.1.22) between them. These yield
(11.1.14), the sound wave equation.

e) Comparison to Matter Wave Field Operators: The sound field f(x, t) contains
the creation and destruction operators in equal proportions, while the matter
wave fields y(x, 1), ¢! (x, t) consists only of either destruction or creation opera-
tors. The explicit inclusion of the factor 1//w, means that there is no simple com-
mutation relation between f*) and f-). However, this factor is also the reason
that f(x, 1), and 0f(x,t)/dt obey the canonical commutation relation (11.1.22),
since it cancels with the factor of wj which arises from the time derivative.

11.1.3 The Electromagnetic Field

The electromagnetic field equations in free space (that is, with no charge or cur-
rent sources, and no dielectric or permeable materials) are the quantized versions
of Maxwell’s equations. Their quantization is similar to that for sound waves, but
is considerably more technically complex because of the vector nature of the fields
involved.
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a) Heisenberg Equations of Motion: In this case it is simpler to work in the
Heisenberg picture, and for the electromagnetic field operators the Heisenberg
equations of motion are Maxwell’s equations

V-D = 0, (11.1.25)
V-B = 0, (11.1.26)
VxE = 0B (11.1.27)
T ar’ o
Vx H oD (11.1.28)
X = _ o
ot’

where B = uoH, D = o E, where i, £ are the magnetic permeability and electric
permittivity of free space and poeg = ¢ 2.

b) Potentials: The electromagnetic field is best represented in terms of the vector
and scalar potentials A and ¢, in terms of which
B = VxA, (11.1.29)

E=-Vp-—. (11.1.30)

However there is no unique set of A and ¢ which specify a given B and E since a
gauge transformation
A = A+Vy, (11.1.31)
ox
= - =, 11.1.32
¢ === (11.1.32)

does not change the measurable fields B and E.

c) Coulomb Gauge: For the purposes of optics the Coulomb gauge is convenient;
this is defined by the choice of a time-independent ¢, and a transverse vector po-
tential, thus

ox, 1 — Px), (11.1.33)
V-A(x,t) = 0. (11.1.34)

Thus, we can write

B(x,t) = Vx A(x, 1), (11.1.35)
0A(x,1t)
or '
with the transversality or Coulomb gauge condition (11.1.34).
This particular choice of gauge is not the only one—relativistically invariant

choices are also possible, and are much more appropriate for more advanced
work.

E(x,1) = —-Vd(x) - (11.1.36)
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d) Wave Equation: The expansion in modes is essentially the same kind of ex-
pansion used for the one component sound field of Sect. 11.1.2, with some com-
plications introduced by the vector nature of the fields, and the transversality con-
dition. Substituting (11.1.35) in (11.1.27) we find that A(x, t) satisfies the wave
equation

1 0%A(x, 1)
¢z o
Maxwell’s equations, and the wave equation (11.1.37) for the the vector poten-
tial, will be the Heisenberg equations of motion which should arise from the cor-

rect choice of Hamiltonian operator. The electrostatic potential ¢(x) on the other
hand remains as an unquantized c-number.

VZA(x, 1) = (11.1.37)

e) Expansion in Mode Functions: As for sound waves, we separate the vector po-
tential into positive and negative frequency terms

Ax, D) = AYx, 0+ A9, 0). (11.1.38)

Here A™)(x,1) contains only Fourier components with positive frequency, i.e.,
only terms which vary as e~“* for w > 0, and A (x, t) contains amplitudes which

vary as 1. We take A to be Hermitian so A (x, 1) = {A® (x, 0} .

f) Mode Functions: The positive frequency part of vector potential is expanded
in terms of the discrete set of orthogonal mode functions and destruction opera-
tors as

AV, = Y apup(x)e Ok (11.1.39)
k

The set of vector mode functions u;(x) which correspond to frequency wy will
satisfy the wave equation

w2

(V2+C—§)uk(x) = 0. (11.1.40)
The mode functions are also required to satisfy the transversality condition which
arises from (11.1.34)

V-ur(x)=0. (11.1.41)
They also form an orthonormal set

f ui(x) - up (x)d>x =6, (11.1.42)

v

which is complete within the chosen volume. Plane wave mode functions may be
written as

1
u(x) = _é(l)
14

exp(ik- x), (11.1.43)

where 2 are the unit polarization vectors satisfying

k-eW=0 eV .M =5,,. (11.1.44)
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(For plane polarization & can be chosen real, but this is not possible for circular
polarization.) The mode index k describes several discrete variables, the polar-
ization index (A = 1,2), and the three Cartesian components of the propagation
vector k. Thus, we have the equivalence

k — (k,A),
and as a consequence of the wave equation (11.1.40)

wi = clkl. (11.1.45)

The polarization vector & is required to be perpendicular to k by the transver-
sality condition (11.1.41).

g) Expansion of Field Operators: The vector potential operator may now be writ-
ten in the form

h
Ax,t) =
Xk: 2wi€o

(acucre ™k + afup e). (11.1.46)

The corresponding form for the quantized electric field (i.e., excluding the part
—V¢(x) arising from the static scalar potential) is
0A(x, 1)

Eraq(x,1) = T (11.1.47)

[ , .
= i; % (akuk(x)e"“’k‘ - azu;(x)e'“’k‘). (11.1.48)

Thus E.q4(x,t) acts as a variable canonically conjugate to the vector potential
A(x,t). The commutation relation does not take a simple delta function form,
however, because of the transversality condition.

h) Hamiltonian: The Hamiltonian for the electromagnetic field is given by
E> B?
Hgm = f(eo +—-—)d3x. (11.1.49)
2 2o
By substituting for E and B using the expression (11.1.48) for E and a similar one

for B, and by making use of the conditions (11.1.40, 11.1.41), this Hamiltonian can
be reduced to the form

Hem = ¥ clkl (a;;ylak,,l + %). (11.1.50)
k,A

)

11.1.4 Monochromatic Electromagnetic Waves

No wave is truly monochromatic, so what we mean here is a wave in which the
frequencies of interest are around a value (, so that we can write an expression
for the fields in the form

Alx, 1) = (

1/2
—-iQt iQtygyt
2960) (e W(x, 1)+ eyt (x, t)), (11.1.51)

1/2
E(x, 1) = 1(—) (e'm"l’(x, 1) — el iyt () t)), (11.1.52)
2€



134 11. Quantum Fields

in which
Y(x,0) = Y apup(x)e Ok, (11.1.53)
k
@ = wp-Q. (11.1.54)

The intensity of the electromagnetic field is given by the energy density, as ex-
pressed in (11.1.49). In the case of a monochromatic field this will contain terms
proportional to exp(+2iQ¢), which oscillate so rapidly compared to the other
terms that they are not measurable by any ordinary detector, which must aver-
age over periods far longer than that of a single optical cycle. The end result is that
the operator for the intensity of the detectable electromagnetic field is the rate of
photon counting which is determined by the mean value of the intensity operator

I(x,1) = (h—Q)\P*(x n-¥Y(x t)+(§ﬁ)(Vx‘l’T(x t))-(Vx‘I’(x n). (11.1.55)
' 2¢9 ' ' 2Q ' T ’

The vector nature of the field makes for the somewhat complicated formula, but
qualitatively, this is very similar to the number density operator for a matter field,
v Dy(x, ).

11.1.5 States of Quantized Fields

The dynamical states of a quantized field may be described by assigning an appro-
priate quantum state to each of the modes—these modes may be assigned and de-
scribed independently. All of the apparatus developed for Boson or Fermion oper-
ators in Chap. 10 can then be applied to the specification of the relevant quantum
states.

In this section we will consider the electromagnetic field only—the results for
other fields are very similar.

a) Vacuum State: This is the state |0) with no photons in it, i.e., such that

ai|0) =0 for all k. (11.1.56)
In this state, although

(E(x,1)) = (0|E(x,1)|0) =0, (11.1.57)

the correlation functions are not zero, in fact

1
hopwi |2 i !
(OlE(x, HE(x', )]0y = Z( 4;62 k) uk(x)u;;(x’)e‘l(wkt—wk/t)6k,ku
k,k' 0
(11.1.58)
_Z(Z}zwzs) A* eleiwrti- t)+ik(e—x) (11.1.59)

This represents vacuum fluctuations, in which even in the vacuum there is a non-
vanishing fluctuating electromagnetic field, whose average is zero.
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b) Coherent State: Ifevery mode of the electromagnetic field is in a coherent state
|a), such that

ala)y = ail|a), (11.1.60)

then this is a coherent state of the positive frequency part electromagnetic field
operator;

EM(x,tla) = Ex, D), (11.1.61)

where E(x, t) is a function given by
h 1/2 .
Ex, 1) = iz(ﬂ) apug(x)e Okt (11.1.62)
k 280

The mean value of the electric field in this state is clearly & (x, £) + £ (x, ).

c) Number State: A number state is one with a definite number of quanta of one
mode, thus

tyni ¢, tyn

(ah™(ah)...
k1, n1, ko, 1,...) = ————10). (11.1.63)

Vv n !n2! ...
Such a state is quite hard to create. The mean field in such a state is zero, but the
mean square field is non-zero. Number states are, however, the most useful basis
states for calculations.

Exercise 11.1 Mean Square Electric Field in a Number State: What is the mean
square electric field in a number state with n quanta in the mode k = (k, A)?

11.2 Coherence and Correlation Functions

The principal difference between quantum mechanics and classical mechanics
arises from the wave nature of matter, leading to the importation into mechanics
of the characteristically optical phenomena of interference, diffraction, and the
concept of coherence as a way of characterizing these phenomena quantitatively.
The elementary object of classical wave theory is a wave with a well-defined phase
and amplitude, and interference is regarded as arising when two such waves are
superposed. Since the phase is considered to be well-defined, interference min-
ima will appear at positions determined by the relative phase between the two
waves.

Such ideal wave sources are found essentially only in radio waves, where the
phase of the wave can be determined by that of the oscillator at the source. In
a laser, the coherent field which emerges has a very stable phase, but it is not
determined by any kind of classical oscillator. Thermal sources of light, which are
the most common sources, must be treated statistically.
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In the remainder of this chapter we will consider the case of scalar fields, such as
matter fields and sound fields, and will consider the kinds of correlations and in-
terference that can occur between modes, and thus between the field at different
points in space. Time correlations make more sense when there is an underlying
dynamical theory which describes how the fields interact with each other or other
objects, and these will be dealt with in Chap. 13, and also in Book I1.

11.2.1 Interference of Classical Waves

Classically, we can imagine fields which are only statistically known, in the sense
that the phase and the amplitude are random variables with a certain probabil-
ity distribution. We can then consider combining together such random fields at
points x; and x, by some appropriate interference experiment so that the field at
some point r is given by

y(r) = y(x1) +y(xp). (11.2.1)
The mean particle intensity at r, where the beams are combined, is

I(r) =y (). (11.2.2)
Thus total intensity at r is

I(r) = (D)) + Ay (x2)1?) + 2Re {(p* (x2)w(x1))}. (11.2.3)

a) First-Order Correlation Function: The quantity
Gi(x1,%2) = (Y" (x1)y(x2)), (11.2.4)

is a measure of correlations at different spatial points. It is usual to normalize by
dividing by the intensity, so we define the first-order correlation function as

W™ ()Y (x2))
, =, 11.2.5
g1(x1,x2) EIED) ( )
so that (11.2.3) becomes
I(r) = I(xy) +I(x2)+2 I(xy)I(x2)Re {gl (xl,xz)}. (11.2.6)

Exercise 11.2 Effect of aRandom Phase: The most important effects come from the

phases of the fields. Suppose that
Y(x;) = a(x;)e PEI+idx) (11.2.7)

where the a(x;) are non-random and the §(x;) are mutually Gaussian with mean zero.
Show that

g1(x1,x2) = e IPENHIPLx) oy (—% (61 -8(x))). (11.2.8)

Show that even if the amplitudes a(x;) are moderately random, the first-order correla-
tion function is not greatly altered.
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b) Second-Order Correlation Function: Even when the first-order correlation
function is zero, one can obtain interference effects by correlating intensities, as
was first done by Hanbury Brown and Twiss [48]. Instead of combining wave
sources from two different points and measuring the intensity, one measures the
intensity at two different points and correlates these intensities. This defines the
intensity correlation function or second-order correlation function

Go(x1,%2) = (lp(x) Py ). (11.2.9)
A corresponding normalized correlation function is also defined by
Ga(x1,x2)
(x1,x2) = ——. (11.2.10)
82002 = i 1)

Exercise 11.3 Gaussian Fields: If the fields are jointly Gaussian with no mean field
then

Gox1,x2) = I I(x2) + | ™ o)y )| + [y (x| (11.2.11)

In thermal situations, particularly in optics, the correlation function (y(x1)y(x3)) van-
ishes, and the last term is then omitted. In this case we get

g(x1,x2) = 1+|g1(x1, %) [ (11.2.12)

©) Interference Effects Using Intensity Correlations: Consider a field made by
adding two plane waves

px) = nePelk* pelfzeikex (11.2.13)
The intensity at x is
1(x) = 12+ 12 +2rracos (1 — 2 + (ky — ko) - x). (11.2.14)
We can now take the intensity correlation function
Go(x1,%2) = lan|* + a2l + 2l P @z
+2(la1? +|az)?) Re {ag M (ei(k‘_kZ)"“ + ei(kl_kZ)'xz)}
+4Re {al a; ei1—k2)x1 }Re {al aé‘ei(k‘_kZ)"C2 } , (11.2.15)
where
a=ne'?,  a=re. (11.2.16)

Now let us consider the case that the amplitudes a; and a; have random phases.
For convenience we write

¢ — 0, ¢P2—0-¢, (11.2.17)

and average the correlation functions over these phases:
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i) The intensity averaged over these angles simply becomes rl2 + rzz, and thus
shows no interference fringes.

ii) For the intensity correlation function, the ensemble average of the second line
of (11.2.15) vanishes, and the ensemble average of the last line is

1 2n 2m

m A do d¢4r1 ry COS(([)+(k1 —kz)'xl)COS(—([)+(k1 —kz)'xZ),

=2r{r; cos ((k1 —k2)- (x1 — x2)). (11.2.18)
Thus, the ensemble average of all of (11.2.15) is

G2 (x1,%2)|Ensemble = (r1+r2) +2riricos((k1 —k2)- (x1 —x2)).  (11.2.19)

iii) This means that we can take two fields with randomized phases, and there
will be no interference pattern visible in the intensity, because G (x;, x») van-
ishes, but that nevertheless there is a clearly visible interference pattern in the
intensity correlation function. This pattern has the same spatial frequency
which would be observed in the intensity if the phases were not completely
randomized.

Exercise 11.4 Fringe Visibility: The fringe visibility of the pattern given by (11.2.19),
defined by the ratio of maximum to minimum of G2(x1, X2)|gnsemble- IS

Gmax _ gmin 2r12 rz2
V= o 2. 22" (11.2.20)
G+ Gy (ri+13)

This has a maximum value of 50%, which happens when ry = ro.

d) Physical Interpretation: In practice we imagine the random phasing of the
amplitudes to arise as a result of time-averaging over a long period, during which
the amplitudes have a definite phase at any given time. Thus, if one did an accu-
rate time-resolved measurement of the intensity, one would see the interference
pattern (11.2.14) with time-dependent phases—the pattern would be seen to jit-
ter back and forth, but always remain of the same shape. Thus, the average of this
pattern would give the structureless result r? + r5. However the periodic structure
of I(x) still reveals itself in the intensity correlation function (11.2.19).

11.2.2 Quantum Interference

When considering interference of fields in quantum theory, we need only one field
operator ¥ (x), whose modes are populated in such a way as to correspond to in-
terfering modes of the same field. Let us consider therefore a quantum field in
which there are only two occupied modes, corresponding to two wavenumbers
k; and k»;
v(x) = ae

ikrx . g,e1%2* 4 unoccupied modes. , (11.2.21)
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The correlation functions can be defined in various ways because of choices of
operator ordering. The quantum correlation functions conventionally used are
normally ordered, so that
G1(x1,%2) = (W' (x)y(x2)), (11.2.22)
Ga(x1,x2) = (¥ ()Y (x)w (x2)y (x1)). (11.2.23)
Because of the normal ordering, these are zero in the vacuum state.

The intensity correlation is defined as the correlation function of the operator
intensity

1x) =y ), (11.2.24)
and it follows that
{I(x1)1(x2)) = Ga(x1,%2) +6(x1 — x2) {I(x1)). (11.2.25)

a) Coherent States: The coherent states which are so useful in quantum optics
exist for any kind of Boson operators, and are described fully in Chap. 15. Thus,
the coherent state can be expressed as

lal2r2 5~ @"
la) = e” —|n), (11.2.26)
>V
and this leads to the defining equation
ala) = ala). (11.2.27)

Such a state is a superposition of states of different particle number, and when
these particles are atoms, which are massive and conserved, this cannot represent
anything other than a mathematical construction. In contrast, photons can be
created and destroyed easily, are not massive, and thus the actual creation of such
a state is feasible, and indeed this is a good description of the electromagnetic
field of a laser.

b) Interference of Coherent States: If the quantum states of modes 1 and 2 are
coherent states, written |a, @), then the density shows interference:

W' @y @) = (a1, a2l (afe_ik"x + aﬁe_“‘z’x) (al elkrey aze“‘”) lay, az),

(11.2.28)
= a1 +]azl +2Re {aj ay ek x} (11.2.29)

If we set
ap— e, ay— e, (11.2.30)

this is identical to the classical result for interference of fields with well-defined
amplitude and phase.

Similarly, when we consider the density correlation function for the same co-
herent states, we get

4 4 2, 12
Ga(x1,%2)|coherent = la11” +|az|” +2]a;|”|az]

+2(ler ? + lazlz)Re {a;al (ei(k‘_kz""‘ + ei(kl_kZ)’xz)}

+4Re {a azel®1 kD51 Re {ay aeiiko =l (11231)
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and making the same replacements (11.2.30), this is also identical to the corre-
sponding classical result (11.2.15).

¢) Number States: Let us consider the bivariate number states |n;, nz), and use
the usual results

a1|lny, np) = /m |y, np), etc. (11.2.32)
The intensity at the point x becomes
(m, moly )y @)y, n2) = ny +na, (11.2.33)

while the correlation function becomes

Ga(x1, %2) Inumber = (a} @l @y ar) +(al a} ay @) + (al al ar ap) + (a ab ar o)

+ (a;'a;‘al ap)e iki—k2)-(x1-x2) | (a}L agal apyelki—k2-x1=x2) (17 5 34y

= (m1 + n2)? + 2ny n cos ((ky — ko) - (x1 — X2)) — 1y — . (11.2.35)
If we set
m—ri, m—ri (11.2.36)

the result for the intensity is exactly the same as that for the classical interference
of two fields with random phases. The result for G, is almost the same, but the
quantum result is reduced by a term n; + np. For large occupations ny, ny, this
becomes negligible, and we can regard the interference between number states
as being similar to that from a thermalized classical source.

Exercise 11.5 Fringe Visibility: Show that for the case of number states the visibility
is

2nyny

v= . (11.2.37)
(m +n2)2—ny—my

When ny, np are large, this is slightly bigger than the classical result (11.2.20). For the
technically difficult, but physically conceivable case of n; = ny =1

G(x1,x2) = 2+2cos (k1 — k2) - (x] —x2)), (11.2.38)

and the fringe visibility increases to 100%.

Exercise 11.6 Fermion Interference: If a;, ay are Fermi operators, show that
G(x1,x2) = 2—2cos (k1 — k2) - (x1 —x2)), (11.2.39)

and that fringe visibility is again 100%.
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d) Correlated State of Fixed Total Number: Let us consider the projection of the
bivariate coherent state |a, @) onto states of fixed total number of atoms. This is
easy to write down directly from the definition (11.2.26) as

n,M-n
a;a,

2 2
IM) = e—(lall +lazl?)/2
Z n!'(M — n)!

In, M — n). (11.2.40)

Exercise 11.7 Expression in Terms of Coherent States: Show that if

a1 =re®,  ap=rpei?) (11.2.41)
then we can write

1 27 .
IMy = 2 doe” lMe|ocle age’e), (11.2.42)

71
2_ 2

(r2+rpMe "%
(MIM) = ——-—Ml—— (11.2.43)
Show thatif i, j, k, I take on the values 1,2,

" Maja;j
(Mla; aj|M) = ﬁ(MHVI). (11.2.44)
lai1e +laz|

Similarly

M(M—l)a;f‘a;akal
<M|a*a aralMy = s— (MIM). (11.2.45)
(la1l? +1azl?)

Using the results (11.2.44, 11.2.45) both G; and G, can be evaluated from the co-
herent state results (11.2.29, 11.2.31). If M > 1 = M(M—1) = M2, these are of the
same form as the classical coherent results (11.2.14, 11.2.16) with the correspon-
dences

M M
a = _M__ a» = .___a_z_\/_______. (11.2.46)

ViaPal ViaP il
The Poissonian nature of (11.2.43) means that the dominant contribution to the
bivariate coherent state comes from M = |a1|2 + |a2|?, so this result is almost in-
distinguishable from that of the bivariate coherent state.

11.2.3 Summary—Phase and Interference

The classical picture of coherence, correlation and phase sees a wave as having a
definite phase, and incoherence as arising as an ensemble or time average over
fluctuations of this phase. That is, phase and amplitude exist simultaneously, but
may be obscured by fluctuations. The quantum concepts are quite different, but
the results for correlation functions and interference are not as different as one
might expect. The interference effects found from number states are very similar
to those found from classical ensembles with random phases, and the results from
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interference between correlated states of fixed number are barely distinguishable
from either the classical or the results from bivariate coherent states.

The bivariate coherent state representation of interfering beams of bosons is
the most convenient one available, but is misleading in a situation where it is
clear that no absolute phase exists—the only phase reference for a matter wave
is another matter wave. This is in contrast to a classically generated electric field,
whose phase is directly related to the phase of the oscillator driving it. Further-
more, the actual strength of the electric field can be measured and its peaks de-
termined; this is truly an absolute phase measurement. For optical fields this is in
principle still true, but the frequencies are so high that the direct measurement of
the field is not easy. In matter waves the phase we want to talk about is essentially
the same as that of a Schrédinger wavefunction, and this truly has no absolute
meaning. Nevertheless, it is awkward to do quantum mechanics in such a way
as to avoid absolute phases, so we accept them as a convenience which has no
physical consequences.

Therefore, from time to time we will choose to use matter wave fields which
do have an absolute phase, and this is in particular the case with a Bose-Einstein
condensate. If we then take a coherent state |a) for each mode of the matter
wave field, then a mean field arises

Y(x, 1) = Y agelFrion (11.2.47)
k

and since this is merely a complex function, it has a phase. However, any actual
physics takes place only in subspaces of fixed total number. These are correlated
states of fixed total number, that is, multivariate versions of those in Sect. 11.2.2c,
but in the case of highly occupied states, such as in a Bose-Einstein condensate,
there is no measurable difference between the results predicted by these states
and those given by multivariate coherent states.



